1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
//! Synchronization primitive allowing multiple threads to synchronize the //! beginning of some computation. //! //! Implementation adapted from the 'Barrier' type of the standard library. See: //! <https://doc.rust-lang.org/std/sync/struct.Barrier.html> //! //! Copyright 2014 The Rust Project Developers. See the COPYRIGHT //! file at the top-level directory of this distribution and at //! <http://rust-lang.org/COPYRIGHT>. //! //! Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or //! <http://www.apache.org/licenses/LICENSE-2.0>> or the MIT license //! <LICENSE-MIT or <http://opensource.org/licenses/MIT>>, at your //! option. This file may not be copied, modified, or distributed //! except according to those terms. use crate::{mutex::Mutex, RelaxStrategy, Spin}; /// A primitive that synchronizes the execution of multiple threads. /// /// # Example /// /// ``` /// use spin; /// use std::sync::Arc; /// use std::thread; /// /// let mut handles = Vec::with_capacity(10); /// let barrier = Arc::new(spin::Barrier::new(10)); /// for _ in 0..10 { /// let c = barrier.clone(); /// // The same messages will be printed together. /// // You will NOT see any interleaving. /// handles.push(thread::spawn(move|| { /// println!("before wait"); /// c.wait(); /// println!("after wait"); /// })); /// } /// // Wait for other threads to finish. /// for handle in handles { /// handle.join().unwrap(); /// } /// ``` pub struct Barrier<R = Spin> { lock: Mutex<BarrierState, R>, num_threads: usize, } // The inner state of a double barrier struct BarrierState { count: usize, generation_id: usize, } /// A `BarrierWaitResult` is returned by [`wait`] when all threads in the [`Barrier`] /// have rendezvoused. /// /// [`wait`]: struct.Barrier.html#method.wait /// [`Barrier`]: struct.Barrier.html /// /// # Examples /// /// ``` /// use spin; /// /// let barrier = spin::Barrier::new(1); /// let barrier_wait_result = barrier.wait(); /// ``` pub struct BarrierWaitResult(bool); impl<R: RelaxStrategy> Barrier<R> { /// Blocks the current thread until all threads have rendezvoused here. /// /// Barriers are re-usable after all threads have rendezvoused once, and can /// be used continuously. /// /// A single (arbitrary) thread will receive a [`BarrierWaitResult`] that /// returns `true` from [`is_leader`] when returning from this function, and /// all other threads will receive a result that will return `false` from /// [`is_leader`]. /// /// [`BarrierWaitResult`]: struct.BarrierWaitResult.html /// [`is_leader`]: struct.BarrierWaitResult.html#method.is_leader /// /// # Examples /// /// ``` /// use spin; /// use std::sync::Arc; /// use std::thread; /// /// let mut handles = Vec::with_capacity(10); /// let barrier = Arc::new(spin::Barrier::new(10)); /// for _ in 0..10 { /// let c = barrier.clone(); /// // The same messages will be printed together. /// // You will NOT see any interleaving. /// handles.push(thread::spawn(move|| { /// println!("before wait"); /// c.wait(); /// println!("after wait"); /// })); /// } /// // Wait for other threads to finish. /// for handle in handles { /// handle.join().unwrap(); /// } /// ``` pub fn wait(&self) -> BarrierWaitResult { let mut lock = self.lock.lock(); lock.count += 1; if lock.count < self.num_threads { // not the leader let local_gen = lock.generation_id; while local_gen == lock.generation_id && lock.count < self.num_threads { drop(lock); R::relax(); lock = self.lock.lock(); } BarrierWaitResult(false) } else { // this thread is the leader, // and is responsible for incrementing the generation lock.count = 0; lock.generation_id = lock.generation_id.wrapping_add(1); BarrierWaitResult(true) } } } impl<R> Barrier<R> { /// Creates a new barrier that can block a given number of threads. /// /// A barrier will block `n`-1 threads which call [`wait`] and then wake up /// all threads at once when the `n`th thread calls [`wait`]. A Barrier created /// with n = 0 will behave identically to one created with n = 1. /// /// [`wait`]: #method.wait /// /// # Examples /// /// ``` /// use spin; /// /// let barrier = spin::Barrier::new(10); /// ``` pub const fn new(n: usize) -> Self { Self { lock: Mutex::new(BarrierState { count: 0, generation_id: 0, }), num_threads: n, } } } impl BarrierWaitResult { /// Returns whether this thread from [`wait`] is the "leader thread". /// /// Only one thread will have `true` returned from their result, all other /// threads will have `false` returned. /// /// [`wait`]: struct.Barrier.html#method.wait /// /// # Examples /// /// ``` /// use spin; /// /// let barrier = spin::Barrier::new(1); /// let barrier_wait_result = barrier.wait(); /// println!("{:?}", barrier_wait_result.is_leader()); /// ``` pub fn is_leader(&self) -> bool { self.0 } } #[cfg(test)] mod tests { use std::prelude::v1::*; use std::sync::mpsc::{channel, TryRecvError}; use std::sync::Arc; use std::thread; type Barrier = super::Barrier; fn use_barrier(n: usize, barrier: Arc<Barrier>) { let (tx, rx) = channel(); for _ in 0..n - 1 { let c = barrier.clone(); let tx = tx.clone(); thread::spawn(move|| { tx.send(c.wait().is_leader()).unwrap(); }); } // At this point, all spawned threads should be blocked, // so we shouldn't get anything from the port assert!(match rx.try_recv() { Err(TryRecvError::Empty) => true, _ => false, }); let mut leader_found = barrier.wait().is_leader(); // Now, the barrier is cleared and we should get data. for _ in 0..n - 1 { if rx.recv().unwrap() { assert!(!leader_found); leader_found = true; } } assert!(leader_found); } #[test] fn test_barrier() { const N: usize = 10; let barrier = Arc::new(Barrier::new(N)); use_barrier(N, barrier.clone()); // use barrier twice to ensure it is reusable use_barrier(N, barrier.clone()); } }